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Abstract

A thermodynamic model is developed of the free energy of gas-filledsviirmed within cavities on $id surfaces covered by a liquid.
Capillary effects are assumed to be the only important contributions to the free energy, and expressions are derived for the free energy of th
system as a function of the void size, the relative surface free energy densities involved, and the geometry of the cavity. The results of the
model are (1) construction of a stability diagram that maps the most stable void configuration versus the wetting properties of the various
solid surfaces involved, and (2) rough estimates of the work redju@rdiberate a void of a given size and position. The model can give
qualitative insight into the stability of coating defects on uneven surfaces, and also can be used to prescribe possible surface treatments f
reducing the work required to remove voids from the system.

0 2004 Elsevier Inc. All rights reserved.
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1. Introduction photolithographic or stampingpcedure. Flow of liquid can
cover such features before the gas can escape, especially if
the solid surface is lyophobic. This phenomenon is particu-

The rapid covering of a solid surface by a liquid is an larly prevalent. for example. when electrolviically d "
event common to diverse processes in nature, science, en 2y Prevaient, for example, when electrolytically depos

gineering, and medicine. Some examples from manufactur-. 9 metals into small cavities<50 um diameter) like those

e . . formed in photoresist masks for patterning electrical circuits.
ing include processes such as investment casting, electro-

lating. cleaning. dip coating. spin coating. painting. screen For such geometries a commonly observed defect is a lens-
piating, g, dip 9. sp 9. P 9 shaped depression in the deposited metal, as illustrated in
printing, and production of powder slurries. In the field of

o ) o i Fig. L These depressions indicate regions of low current
medicine, exa.mples include thg flow of liquids into syringes where a bubble prevented adequate liquid contact.
and through intravenous feeding tubes. By any of these
processes, gas may become trapped as isolated pockets, or
voids, at liquid—solid surfaces. The number and size of the
voids that form depend both on the details of the liquid flow
and on the properties of the solid surface, such as its rough-
ness and its tendency to be wet by the liquid. In coating or
casting applications, voids that are not removed can result in
defects that compromise the adhesion, electrical properties,
surface finish, and durability of the product.

Conditions for the initial formation of a void are espe-
cially favorable at reentrant features of a rough surface, such
as pinhole defects in films, pits and scratches formed by
grinding, and even intentional cavities formed by a prior

Fig. 1. lllustration of electroplating defect caused by gas-filled voids trapped
E-mail address: jeffrey.bullard@nist.gov. in recessed cavities.
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Given the negative impact that gas-filled voids have on ‘{ D }
many processes, it is desirable to find ways either to prevent
their formation or to expedite their removal from the system
once they have formed. In situations where it is not feasi-
ble either to modify the way in which liquid is introduced at
the surface or to chemically adlify the surfaces, the forma-
tion of surface voids may be unavoidable. In many of these
systems, voids persist because they are thermodynamically
stable. For such systems, voids can be removed only by sup-
plying work, such as mechanicabration or impact in their
vicinity.

This paper analyzes systems in which voids may be
trapped in low-energy configurations. A thermodynamic

Fig. 2. A schematic of the 2-D void model.

model is presented of a gas-filled void at an idealized reen-

trant surface feature, and theodel is used to calculate the

most stable void configuration (including the possibility of /_\
the void being liberated from the surface). The approach is Corner (C) 2C Base (B)

similar to that used by Chatain et §l] to analyze the ther-

modynamically stable shapes of two-phase systems enclosed

within a cubic cavity. By calculating the free energy of the Q
stable configuration relative to that of a liberated void of the

same size, the minimum work required to release the void is
predicted. The idealized model has the benefits of being an-
alytically tractable and of leading to insights that should be
qualitatively valid for real systems. In fact, as showrsec-

tion 3, even the quantitative predictions of the work required

to remove a void are expected to be good approximations )
that can be used to help design procedures for removingthe close resemblance to features found in, for example, se-
these types of defects. lective electrodeposition processes, the base of the cavity

(denoted B) is assumed to have different wetting properties
than the walls (denoted W). To avoid the complication of ap-
preciable gas solubility or any chemical reactions, the liquid,
solids, and gas are assumed to be mutually inert.

The free energy of the system clearly should depend on
the shape and location of the void within the cavity. The
possible distinct configurations that a void of a specified vol-
ume! may adopt are shown ifig. 3along with a name and
one-letter symbol by which each configuration will be de-
noted throughout this analysis. In principle, a volume of gas
could be partitioned into multiple voids of different sizes,
such as one void in each corner or one void at the wall and
another at the base. However, as showAppendix B the
only circumstance for the system at hand in which this can
The basic 2-D model is shown Fig. 2. It consists of a happen is that for which the interface between the void and

chemically homogeneous liquid (denoted as L) partially fill- the Iqu!u_j is convex when wewe_d from within the void. Such
ing a reentrant surface featrThe remainder of the cavity & conditionis possible geometrically only for the corner con-
is assumed to be filled with a gas (denoted G). The liquid figuration, and so we also consider a configuration, labeled
is assumed to provide a thermal reservoir sufficient to keep @S “2C" inFig. 3, in which two voids having equal volumes
the entire system isothermal. Furthermore, the liquid and ex- form, one at each corner. By calculating the free energy of
ternal atmosphere with which it is in contact are assumed to €ach configuration at constant void volume, subject to the
provide a fixed hydrostatic pressure. As long as the pressuredeometric constraints, the most stable configuration may be
remains fixed, it is a good approximation to take the molar determined.

volume of the void to be constant also. The reentrant sur-

fe}ce fea_‘ture is a cavity having widih and deptth. TYP'Ca' . 1 Strictly speaking, “volume” is really an area in 2-D, but for purposed
dimensions ofD andh are often 10 to 1000 um in engi-  of clarity we will continue to refer to space in 2-D as having volume and to
neering applications. For greater generality, and because ofinterfaces in 2-D as having area.

Wall (W) Span (S) Free (F)

Fig. 3. Different configurations of a void in a surface cavity.

2. Model description

In this section, the basic model is described in some
detail, including the primary assumptions that are used
throughout. A two-dimensional model simplifies the math-
ematical details, and is therefore used for most of the cal-
culations. However, because differences between wetting
phenomena in 2-D and 3-D are often significant, a more re-
stricted 3-D model is also developed later in this section as
a check on the 2-D results.

2.1. 2-D model system
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Because the gas is assumed to have fixed molar volumea circle. Furthermore, provadl that both the walls and base

and temperature, the free enerdy, written as a function

of the cavity are essentially rigid solids, minimization of free

of temperature and all other extensive variables, representsenergy can be shown to requ[ig that the geometry satisfy

the thermodynamic potential gaving equilibrium and sta-
bility. We will ignore the presence of body forces arising
from gravitationaP electrostatic, or centrifugal fields. For

constant temperature, void volume and molar content, the g\yg — gwL = COSpw,

bulk contributions to the free energy are invariant and may

be subtracted from the true free energy without further loss

of generality. We denote the four different types of materi-
als by single capital letters as follows:=-Bbase, W= wall,

L = liquid, and G= gas. The area of the interface separat-
ing two phaseg andj will then be denoted ag;;. With this
notation, the free energy may be written[23]

F = F(AgG, ABL, Awa, AwL, ALG)

= / VBGdABG+/7/BLdABL

Agc

+ / WG dAwG + / ywL d AwL

AwL

ABL

Awe

+ / NGAALG,

Al

where, for exampledgg is the total area of surface separat-
ing the base (B) and gas (G), and
IF

VBGE(aABG)

Fig. 2shows thatAg. = D — Agg andAwL = 2h — Awe.
Also, only the differencesin free energies of the various con-
figurations are relevant. We therefore subtract fieq (1)

the constant termgs; D and 24y &, integrate term by term,
and normalize by g:

1)

F —ysLD — 2pwLh
YLG
= (gBG — gBL)ABG + (gwG — gwL)AwG + ALG,

r

)

whereg;; = vij /VLG-
It can be shown, by minimization of free enerffi-6],

that at equilibrium the liquid/gas interface must assume a

shape having convex mean curvature.

AP =yck,

Young’s equation8],

3)
(4)

wheregg and¢w are the thermodynamic contact angles at
the base and wall, respectively (Seig. 2). Therefore, we
may simplify Eq. (2)to

gBG — &BL = COS¢B,

I' = ApG COSPB + Awg COSpw + ALG. 5)

The constitutive variables for the problem at hand are the
void volume,V, and the thermodynamic contact angigs
andew. Therefore we must express, for each configuration,
the surface areas;; in Eq. (5)as explicit functions of these
variables. The mathematics are straightforward but tedious
and will not be reproduced here. Briefly, the areas are written
in Table las functions of the interface radius of curvature,
R and thenR(V, ¢, ¢w) is derived using trigonometry and
catalogued inTable 2 An example derivation for the base
configuration is given iAppendix A

Comparison of the free energies for various values of
the constitutive variables will establish the global equilib-
rium configurations of the void as well as the relative work
required to liberate the void to the bulk liquid. However,
in addition to these free energy considerations, each void
configuration can exist only within certain geometric con-
straints. These constraints are of two types: (1) upper bounds
on the linear dimensions of the void, above which the void
impinges on another boundary of the cavity; (2) for the C
and 2C configurations, the requirement that the liquid—gas
interface have constant curvature implies certain inequality
relationships betweepy andgg. The constraints are cata-
logued inAppendix C

Evaluation of stable void configurations in the 2-D model
is presented in the Discussion section. But fxfirst, we estab-
lish a restricted 3-D model that will be useful for comparison
to the 2-D results.

2.2. Three-dimensional model system
For arbitrary values opg and ¢y, a 3-D analog to the

system depicted irFig. 2 is difficult to analyze because
of the more complex geometries that must be evaluated to

that at equilibrium the liquid/gas interface must assume a determine the volume and areas of the different interfaces.
shape with constant mean curvature. A wide variety of sur- However, the situation simplifies considerably if we assume
face shapes with constant mean curvature, so-called minimalthat¢w = /2 (i.e.,;we = ywL). And because we are inter-
surfaces, can be embedded in three dimensions. However, irested mainly in identifying qualitative differences between
2-D the only constant-curvature surface possible is an arc ofthe more artificial 2-D system and the 3-D system, we will
acceptthat restriction for the 3-D model. The void will be as-
sumed to reside in a tetragonal cavity (i.e., all walls of equal
lengthD but D # k). Also, because the walls and base are all
mutually orthogonal, the condition th@gy = 77 /2 makes the
problem mathematically identical to that of an axisymmetric

2 For large voids, buoyancy forces should be considered because they
become increasingly important, relative to capillary effects, as the sur-
face/volume ratio decreases. However, for small void$00 pm effective
diameter), it is an excellent approximation to ignore gravity.
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I’i?Zi&a of each type of interface as a functio®pfyy, andgp for each configuration shown Fig. 3
Configuration ABg Awg Al

Corner (C)

(pw + ¢B # 37/2) R(cosgw + singg) R(singw + cospg) R(3% —ow —¢B)

_ 2V cosgp [2V cosp 2V
(pw + ¢B = 31/2) Cospw COS¢BW \/m

Two-corner (2C)

(pw + ¢B # 37/2) 2R (cosgw + Singg) 2R(singw + cospg) 2R(% — ¢w —¢B)
Vv %

(éw + g8 =37/2) e coe \ com cos

Wall (W) 0 2R singw 2R(m — ¢pw)

Base (B) R singg 0 2R(m — ¢B)

Span (S)

V<V, D 2h, 2R(% — ow)

V>V D 2h — D + 2R singw 2R(w — dw)

Free (F) 0 0 ZR

For the C and 2C configuration® — oo as¢w + ¢ — 37/2, so the void assumes the shape of a right
triangle and the areas are functionstof For the span configuration,, is the height above the base of the
triple junction formed at each wall.

Table 2

R as a function oV, ¢y and¢g for the configurations shown iRig. 3

Configuration R (0rhp)

Corner (C)

(@w + ¢ <37/2) R= 2y

W T ¢B 37 /242 COSpyy COSPBR+COShyy SiNgyy +COSPR SINGE —dw —PB

_ 2V

(pw +¢B > 31/2) R= —\/ 37 /22 COSpyy COSPg 1 COSPyy SNy +COSPR SINPGE —Pw —PB

(pw + ¢B =37/2) R =00

Two-corner (2C)
_ v

(Pw + B < 31/2) R= \/37'[/2+2 COSpyy COSPR+COSPyy SiNgyy +COSPR SINGE —pwW —PB
_ v

(¢w + ¢ > 31/2) R= _\/371/2+2 COSpyy COSPR +COSPyy SiNgyy+COSAR SINGR —Pw —PB

(dw + ¢B = 31/2) R=00

_ \%

Wall (W) R =\ =Tcospw snow—dw
_ |4

Base (B) R =/ 77 cossp sings 95

Span (S) R= m v <Ve)

— / V—Dh
R= T —dwW+COSpyy Singyy V> Ve)

_Vv D ; i _V
hl’_ﬁ_8co§¢w(n_2¢w_5m2¢W)’ iMpy—srmehp=75 V<V

Free (F) R=.V/n
The usual convention is adopted here of takihgositive if the surface is convex when viewed from outside

the phase of interest (the void in this model). Bu special case of a span configuration, the heightf the
meniscus above the base determines the valuggf .

sessile drop (void) on a rigid substrate. And for the latter sit- ble in 3-D besides those identified already for 2-D. These
uation, one may demonstrate, using variational principles to are (1) the void situated along an edge between the base
minimize the free energy, that the liquid/gas interface must and a wall (denoted gy) and (2) the void situated along
assume the shape of a portion of a sphere when gravity isthe edge between two walls (denoteghg). The results are
neglected. given inTables 3 and 4The geometric restrictions on the 3-

Using these assumptions, one may readily obtain expres-D void in a tetragonal cavity are virtually identical to those
sions analogous to thoseTables 1 and 2or the 3-D model for the 2-D system described earlier, and will not be enumer-
system. However, two additional configurations are possi- ated here.
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Table 3
The area of each type of interface as a functio® @nd¢g for each 3-D void configuration possible
in a tetragonal cavity whepyy = /2

Configuration ABg Awe ALg

Corner (C) ZR?siP¢g  R2(m +cospg singg — ¢B) Z R?(1+ cospp)
Base/wall edge (Bw) ZR?siP¢g  mR?>—LR22¢g —sin2pg)  mR2(1+ cospp)

Walliwall edge (Byw) O TR? TR?

Wall (W) 0 TR? 27 R?

Base (B) 7 R2sir? ¢g 0 27 R2(1+ cospg)
Span (S)

V< Ve D? 4Dh, D?

V>V, D2 4Dh + 7 R? — D? 27 R?

Free (F) 0 0 &R?

For the span configuration,, is the height above the base of the triple junction formed at each wall.

B
Table 4 1 X
R as a function ofV and¢g for each type of 3-D configuration possible in w 2C w 2C
a tetragonal cavity whepyy = /2 o s
Configuration R (orhp) \93 0.5 C C i
_ 12v 1/3 e

Corner (C) R= [n(l+COS¢B)2(2—COS¢B)] W B By [W B W
Base/wall edge (Bw) R=[ 3V ]1/3 (A) o2 ® =

27— 5 (1-cos¢p)?(2+cospp) ~F s ~F
Walliwall edge (Evw) rR=[3]"3 i ——

3v /3 S
Wall (W) R=[3Y]

_ 3V 1/3 S S
Base (B) R = roosse 22 com) 305 ¢ ) i S )
Span (S) R=o00 (V<Ve)
rw
3V—D%h) 11/3 © 4w (D —N
R=[252 V>V, !
[ z " v O~ 05 1 0 05 1
hp=V/D* (V<Ve) (PB/TE ‘PB/TE
Free (F R=[3L]V3
ree (F) [4”] Fig. 4. Isometric cuts of a void stability diagram calculated by the
For the special case of a span configuration, the heighof the triple 2-D model for D = h = 100 pm e = 104 pm?). (A) V/V, = 1073,
junctions above the base determines the valué\pg. (B) V/V,=0.02, (C)V/V.=0.2, and (D)V/ V, = 2.0.
3. Discussion only by the minimization of the free energy at constant vol-
ume. The symmetry oFig. 4A therefore is expected be-

3.1. Analysis cause, from the perspective of the void, the cavity is es-

sentially a single corner with base and wall extending away

In two dimensions, specification of the three constitu- from it indefinitely. When the cavity dimensions are more
tive variables ¥, ¢w, and¢g) and the cavity dimensions comparable to the void dimemsis, the base, wall, or corner
D and# is sufficient to determine the thermodynamically configurations can become geometrically impossible, espe-
favored void configuration consistent with the geometric re- cially at larger values oy or ¢g for which the void be-
strictions. The information can be catalogued conveniently comes extremely anisometric. This is reflectedigs. 4B—
in a “phase diagram” that maps the ranges of constitutive 4D. The broken symmetry ifrigs. 4B and 4ds also due
variables within which a given void configuration is stable. partially to the fact that the cavity itself is asymmetric, being
Fig. 4shows four isometric (i.e., constawy V) cuts of such open at the top but bounded on the bottom and sides.
a diagram, using cavity dimensior® = /2 = 100 pm, for To be more quantitative about the changes that occur at
which the total cavity volum#&, = 10* un?. The stable con-  increasing void volumes, notice ffig. 4B that regions of
figuration in any region is denoted by a single capital letter stability for the base and wall configurations appear in nar-
as shown inFig. 3. Chatain et al[1] collect their stability row bands for whichpw or ¢g exceed critical valuesy,
data using the same principle, although in their paper they or ¢g, respectively. Bothpy, and¢g decrease from a max-
employ a different set of constitutive variables. imum value ofz as the void volume increases. To see why

If the dimensions of the cavity are large compared to the this is, take as an example the base configuration. A value of
dimensions of the void, then none but the span configura- ¢g = 7 means that a void in contact with the base will spread
tion are geometrically constrained. Therefore, the stability indefinitely, but because the Wslimit the extent of spread-
diagram shown ifFig. 4A, whereV /V. — 0, is determined  ing, the base configuration is geometrically impossible for
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¢ = 7 at any finite volume. For very small void volumes,

V/ V. < 0.01 the value of the critical angles are sufficiently
close torr that the new stability regions, although present,
are not visually discernible iRig. 4A.

We can approximate these critical angles as a function of
volume. For example, by explicitly writing the constraint in
Eqg. (C.13) with R taken fromTable 2 the value ofpg will
be that for which

4V sir? ¢ = D?(nr + cospg singg — ¢g). (6)

If we usea = — ¢g as a variable, then far — 0 we can
expandEg. (6)to second order and solve to find
¢§%n—ﬁ (mr — 9§ < 1). (7)
Another change in the stability diagrams at larger void vol-
umes is the appearance of a region near the pointt /2,

¢s = ) in which a span configuration is favored. Again,
wheng¢g — 7 a base configuration is not possible because
the void would spread indefinitely, leading to a span con-
figuration. However, the span configuration is only possible,
at small void volumes, if the meniscus is a flat line in 2-D
(a plane in 3-D). If the meniscus is convex or concave, then
it is geometrically impossible to enclose a sufficiently small

193

x 107

(= -200
|
= -300

(B) 0 I OI.5 l
¢g/m

Fig. 5. Free energies calculated by the 3-D model of each configuration
whenD = i =100 pm. (A)V/V, =103 and (B) V/ V. = 0.5. For both
plots, ¢y = /2, and the terminating points of some of the curves indi-
cate the range over which a given configuration can satisfy its geometric
constraints imposed by the cavity dimensions.

volume under such a meniscus that spans the cavity. But asyajue for the 2-D model as welFig. 6 plots these normal-

long as the meniscus is flat or nearly so (i¢gy,~ 7 /2) then
any void volume can be contained by adjusting the height of
the meniscus above the base surface. The rangeg,aiver
which the span configuration is favored, whgg= 7, can

be estimated by following thease procedure as that leading
to Eq. (7) The result is written compactly as

o

>~ 5y (#e = ln/2—gwl < 1), (®)

As shown in the upper right corner Bfg. 4B, the C and 2C
configurations have equal feenergies along the boundary
defined bypw + ¢ = 37/2. It is exactly this condition for
which the liquid—gas interface has zero curvature. As shown
in Appendix B when the liquid—gas interface has zero cur-
vature, the free energy @&¥ voids, having total volumé/,

in corner configurations is independent 8f and there is

no driving force either for coarsening of the voids or for

ized functions for corner, wall, and base configurations. The
additional edge configuratioasailable in the 3-D model are
omitted from the figure for clarity. For every configuration,
the values for the 3-D model differ from those of the 2-D
model by no more than 15%. Therefore, we may have confi-
dence that the 2-D model is sufficient for giving qualitatively
meaningful insights and predictions.

3.2. Application

Stability diagrams like those ifig. 4 can predict the
equilibrium morphology of void in a given system, and they
also can address the more practical question of how the con-
stitutive variables must be changed to reduce the stability of
a trapped void. A striking prediction frorig. 4A is that
very small voids are stable only when the liquid perfectly
wets both surfaces. If the practical objective is to eliminate

anticoarsening. This result agrees with previous results byall voids, regardless of their size, then either work must be

Chatain et al[1].

For the 3-D modelfFig. 5shows plots of” — IFee VS ¢B
for two different void volumes. The new “edge” configura-
tions available in 3-D are in no case the most stable. With
the exception of these two configurations, we can directly
compare the results dfig. 5to the 2-D model. To make
that comparison as meaningjs possible, we first normal-
ize the free energy of each configuration, in 2-D and 3-D, by
the free energy of a free void. The result is a set of dimen-
sionless functiong;> andg;3 in two and three dimensions,
respectively, for configuration These functions each have
range[0, 1]. Furthermore, recalling that the 3-D model in its
present formis valid only fopy = /2, we will assume this

supplied or the liquid and/or solids must be modified to pro-
mote perfect wetting. In many practical systems involving
combinations of organic and metallic surfaces, perfect wet-
ting may be a difficult task because these solid/vapor sur-
faces often have low surface energy densities and therefore
are difficult to wet.

When it is not feasible to eliminate the possibility of void
formation, it is natural to ask (1) how much work must be
performed to free a void, and (2) whether there are other
methods of introducing the liquid, instead of rapid immer-
sion, that are less likely to form a void in the first place. The
first question will be addressed here; the latter question is
outside the scope of the paper.
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1. _ .
0 of any equilibrium analysis, one must be wary of metastable

states.

We also may use this model to infer the behavior of voids
at other types of rough surfaces. First, it is more common
in practical situations for the surface to be more chemi-
cally homogeneous than is assumed by this model. Simply
settinggw = ¢ Will make the analysis here applicable to
systems such as an embossed metal or the inside of a sy-
ringe.

The present model also may be extended to surfaces
for which the “base” and “wall” are not mutually orthogo-

nal. For such systems, the free energies of the wall, base,
0'%6 ' 0'5 . 1.0 and free configurations at equilibrium must be basically un-
) q>B'/n ' changed by departures froorthogonality. The geometric
limits of stability will be different, but even these changes
Fig. 6. Normalized free energies = I/ Iree for various configurations  should be small when theedliation fran orthogondéty is
predicted by the restricted 3-D model (solid curves) and by the 2-D model ot 15 severe. On the other hand, the corner configuration
(dashed curves) for voids withi/ V. = 10~°. . . . .
should become increasingly less stable as the interior angle,
0, between the wall and base becomes more oblique. In the
limiting case where thé — =, i.e., the wall and base are
coplanar, it is not possible for the liquid—gas surface to meet
both types of surfaces while retaining constant mean curva-
ture unlesgw = ¢g. Thus equilibrium is impossible and the
void will spontaneously migrate to the surface for which the
contact angle is greater. Based on these considerations, the
stability of a void is expected to be influenced increasingly
by the least wetting surface 6dbecomes more oblique. For
the same reasons, the corner configuration should become
increasingly favorable a&becomes more acute.

=0.5

By examining results like those ifig. 5 we may calcu-
late the work required to liberate a void of a given configura-
tion. As mentioned earlier, a free void cannot be thermody-
namically favored under these conditions. HoweveFigs5
shows, any reduction in the contact angle between the liquid
and the walls (or, in fact, the base) will reduce the work re-
quired to free a void. Noting the difference in vertical scale
betweenFigs. 5A and 5Bthe plots also confirm the intu-
itive notion that more work is required to liberate a void as
its volume increases.

Work added to the system allows it to sample higher free
energy states and therefore increases the likelihood of form- 4 Conclusions
ing a free void. Once formed, a free void is unstable toward
rising to the top of the liquid under buoyancy forces, butthis 5 relatively simple 2-D model has been developed to
will oceur onlyifa pgth is availaple for the void Fo rise. Oth- | |nderstand the thermodynamtalsility of voids trapped at
erwise, the free void is more likely to reform in a trapped jiquid—solid surfaces. It is important to note that this pa-
configuration of lower free energy. _per does not address mechanisms of void formation, which

_We close this section with a few comments on the applica- yndoubtedly involve complex hydrodynamic factors at the
bility of the model to real systems. Obviously, during the jiquid—solid interface. Also, the model does not address the
formation of a void, the system will often be far from equi-  kinetics of void liberation, which will be dependent on fac-
librium and hydrodynamic factors will play an important tors such as the rheological properties of the liquid and the
role in determining the initial configuration. More impor-  temperature. An understanding of the mechanisms both of
tantly, the initial configuration may be metastable relative to yojid formation and of void removal are necessary to predict
the configuration indicated in the diagram for the appropri- the likelihood and density of void-like defects and for pre-
ate values othyy andgg. As an examplefig. 4Dindicates  scribing detailed methods by which voids can be removed.
that, for void volumes that are large relative to the cavity vol- Nevertheless, the kind of analysis presented here can provide
ume, a liberated void is the only stable configuration if both yseful insights into the energetics of the problem and can
#w andgg are sufficiently small. However, it may be likely  suggest promising directions for making further progress in
for hydrodynamic reasons that a span configuration would the study of such systems.
form initially, making a bubble that spans the opening of the
cavity. The span configuration has higher free energy than a
free void when both wetting angles are small. Butin the span Acknowledgments
configuration, the meniscus capping the cavity could adopt
a local equilibrium shape, and transporting liquid to the base  Edwin Fuller is gratefully acknowledged for a critical re-
surface to liberate the void would undoubtedly require a sup- view of the manuscript. The author is also indebted to Ellen
ply of work in some form. Therefore, as with the application Siem and W. Craig Carter for their valuable comments.
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Fig. 7. 2-D geometry for a base configtion used in deriving the areas,
A;; of the various interfaces and the radiis,as a function of volume.

Appendix A. Example derivations

The functions inTables 1-4were derived using simple
mensuration formulas for circles in 2-D or spheres in 3-D.
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volumeV occupied by any one of these voids having liquid—
gas interface radiuR. Furthermore, lep (v) be the number
of voids having volumes betweearV and (v + dv)V, such
that

1
/p(v)dv:N.
0

The radius of the liquid—gas interface for any void having
volumevV is

(B.1)

R(v) =vY‘R (B.2)
and the interfaces have areas following the form
Apg(0) =014, 4, (B.3)

The mensuration formulas can be derived easily or found in whereA ,, (v) is the area of the interface between phases

reference books (for example, see H8f). As an example
of the procedure, the results for the functiaAg(R) and
R(V) are derived for the 2-D base configuration.

In the base configuration, the area of the interface be-

tween the void and the wall surfacéywg, is zero by def-
inition. The area of the interface between the void, having
radiusR, and the base surfacdgg, is twice the length of
the lower leg of the triangle shown Fig. 7:

Apg = 2R singg. (A1)

The area of the interface between the void (radd)sand
the liquid, ALg, is the difference between the perimeter of
the circle and the arc length of the imaginary cap that lies

below the base (sd€g. 7):
AL =27 R — 2R¢pB. (A.2)

The volume of a void of radiug in the base configuration
is the difference between the volume of a circle of radtus

and the volume of the imaginary cap that lies below the base

(seeFig. 7):

V(R) = 1 R? — R%(m + cosgg Sings — ¢B). (A.3)

Solving for R produces

R=R(V)= \/ v . (A.4)
T + COSpB SINgR — ¢B

Appendix B. Multiplevoids

We wish to determine conditions for which, given a fixed
gas volume, a multiple number of smaller voids may have
lower free energy than a single void in at least one of the
configurations shown iRig. 3.

Let there beV voids, all having the same configuratfon
but arbitrary volumes, and le{ R) be the fraction of the total

andg for a void with volumevV andA ,, 1 is the analogous
guantity for a single void of the same configuration having
the same total volume as tid-void system. Therefore, the
total area of each type of interface bounding the voids in the
N-void system is
1
Apg.1 / pHdy = Apg AN (),
0

(B.4)

where(v1~1/4) is the arithmetic mean value of~Y4. This
relation holds for the area all the types of interface, so
tot

— = N@¥ Y, (B.5)
Now, becausév) = 1/N andv < 1, we have

p1-tdy o 1 (N > 1). (B.6)
Substituting intdeq. (B.5)gives

re > 1. (B.7)

r

If pw < /2 andgp < /2, then these results indicate that
I" of an N-void system having a single type of configuration
exceeds that of a single void with the same configuration and
total volume. Furthermore, for a wall, base, or free configu-
ration,regardless of the values o and¢g, the area of the
liquid—gas interface at constant volume increases with num-
ber of voids. Therefore, the free energy for all of these three
configurations is minimized for a single void. However, the
situation is more complicated for the corner configuration
if opw + ¢ > 37 /2, because all three types of interface
are present and’ decreases with increasingAgg (because
cospp < 0) andAwg (because capy < 0).

For simplicity in analyzing the corner configuration when
ow + ¢ > 37 /2, we assume that alvV voids have the
same volumé.Substituting the 2-D results froffable linto

4 Actually N = 1 or 2 for the corner configuration because there are only

3 The span configuration is not considered because there can only be ongwo corners available in the model. Nevertheless, it seems desirable to keep

void of that type.

the arguments as general as possible.
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Eq. (5)and differentiating with respect ¥ gives

dr _dr I dR
dN ~ ON  9RIN
V (37 .
=+ A + 2 cospw COSpp + COSpp Sings

1/2
+ cospw Singw — dw — ¢B>i| , (B.8)
where the expression fa® from Table 2has been substi-
tuted into the final result. The negative root applies only if
the center of curvature of the interface is outside the void
(¢ + 9w > 37/2). ThereforekEq. (B.8)shows that, neglect-

ing other geometric constraints, the free energy of the 2C |

configuration is actually less than that for the C configura-
tion only if ¢g + ¢pw > 37 /2. Note that ifpg + pw = 37/2,
then the liquid—gas interface is flat, the collection of terms
in parentheses ikq. (B.8)sums to zero, and therefore the C
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If either of the first two constraints is not met, then the void
is so large that only a span configuration is geometrically
possible. If either the third or fourth condition is not met,
then no portion of a circle can simultaneously meet the wall
and base at the required contact angles.

C.2. \oid at each corner (2C)
D

and 2C configurations have the same free energy. Finally, it C.3. Wall (W)
also can be shown, using the same principles as in preced-

ing paragraphs, that the 2C configuration has minimum free

energy when both voids have the same volume.

So far, we have not addressed the case for which, in an

N-void system, the voids adopt different configurations. But
any void in anN-void system, if not already in the stable
configuration for its values afy andgg, can only lower its
free energy by isometrically transforming to the stable con-
figuration. This means that a systemMfvoids in different
configurations has highéree energy than the samévoids

all in the stable configuration. Therefore, the configurations
considered in this paper (s€&. 3) are the only ones eligi-
ble to have the minimum free energy.

Appendix C. Geometric constraintson 2-D voids

We catalogue here the conditions for which a 2-D void of
a given configuration is geometrically allowable. If one or
more of the conditions for a particular configuration is vio-
lated, then that configuration is disallowed even if it would
have the minimum free energy.

C.1. Corner (C)

D
< 1+ cospw (¢ = 7/2), (C.1)
b 2 C.2
< m (¢ <m/2), (C.2)
98+ 2 > dw. (C.3)
T
dw + = > ¢B. (C.4)

2

< m (¢ =>7/2), (C.5)

< Sings 1 cospw (B < 7/2), (C.6)

E > pw, (C.7)

dw+ = 5> > 8. (C.8)

2Rsingw <h (pw =71/2), (C.9)

R(A+singw) <h (pw <7/2), (C.10)

R(1+ cospw) < D. (C.11)
C.4. Base (B)

2R <D (¢ <7/2), (C.12)

2Rsingg <D (¢g > 1/2). (C.13)
C.5. San(9

hy >0 (pw <7/2), (C.14)

D
+ m(l— singw) >0 (¢pw > 7/2), (C.15)

whereh , is given inTable 2
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